ON THE NUMBER OF HOMOGENEOUS MODELS OF A GIVEN POWER*

BY

H. JEROME KEISLER AND MICHAEL D. MORLEY

ABSTRACT

It is shown that, For each complete theory T, the nomber $h_T(\mathfrak{M})$ of homogeneous models of T of power \mathfrak{M} is a non-increasing function of uncountabel cardinals \mathfrak{M} Moreover, if $h_T(\aleph_0) \leq \aleph_0$, then the function h_T is also non-increasing \aleph_0 to \aleph_1 .

A model \mathfrak{A} is said to be homogeneous if, roughly speaking, any isomorphism between two small elementary submodels of \mathfrak{A} can be extended to an automorphism of \mathfrak{A} . The notion is due to Morley and Vaught [7], and is based on Jónsson [2] (a precise definition is stated below). Consider a complete theory T in a countable first order logic with identity. For each infinite cardinal cardinal \aleph_{α} , let $h_T(\aleph_{\alpha})$ be the number of (non-isomorphic) homogeneous models of T of power \aleph_{α} . We shall prove the following two theorems.

THEOREM A. If $h_T(\aleph_0) \leq \aleph_0$, then for all $\mathfrak{m} > \aleph_0$, $h_T(\mathfrak{m}) \leq h_T(\aleph_0)$.

THEOREM B. Assume the GCH (generalized continuum hypothesis). If $\aleph_1 \leq m \leq n$, then $h_T(m) \geq h_T(n)$.

COROLLARY C (GCH). The function h_T is non-increasing except for the single possibility

$$h_T(\aleph_0) = \aleph_1, h_T(\aleph_1) = \aleph_2.$$

It is shown in [7] that if T has any infinite models then $h_T(\aleph_0) > 0$, and assuming the GCH, $h_T(m) > 0$ for all infinite m. Some other results on homogeneous models are given in [4]. For results on the total number of models of T of a given power see [5], [6], and [9].

In this paper we shall use $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ to denote models with universe sets A, B, C. $T(\mathfrak{A})$ stands for the complete theory of \mathfrak{A} , that is, the set of all sentences of our

Received November 23, 1966.

^(*) This work was supported in part by NSF contracts GP 4257 and GP5913.

given logic L which are true of \mathfrak{A} . If a is an α -termed sequence of elements of A, then (\mathfrak{A}, a) is a model for the language L with α additional individual constants; in this case, $T(\mathfrak{A}, a)$ is called the *type* of the sequence a in \mathfrak{A} . We shall be especially interested in types of finite sequences of elements, and we let $S(\mathfrak{A})$ be the set of all types of finite sequences of elements of A,

$$S(\mathfrak{A}) = \{T(\mathfrak{A}, a) \colon a \in \bigcup_{n < \omega} A^n\}.$$

The symbol $\mathfrak{A} \prec \mathfrak{B}$ means that \mathfrak{B} is an elementary extension of \mathfrak{A} (or \mathfrak{A} is an elementary submodel of \mathfrak{B}). We assume the reader knows the definition and basic properties of $\mathfrak{A} \prec \mathfrak{B}$, which are given by Tarski and Vaught in [8]. Note that

$$\mathfrak{A} \prec \mathfrak{B}$$
 implies $S(\mathfrak{A}) \subseteq S(\mathfrak{B})$,
 $S(\mathfrak{A}) \subseteq S(\mathfrak{B})$ implies $T(\mathfrak{A}) = T(\mathfrak{B})$.

DEFINITION [7].⁽²⁾ Let \mathfrak{A} be a model of infinite power $|A| = \mathfrak{m}$.

CASE 1. m is regular. At is homogeneous if for all $\mathfrak{B}, \mathfrak{C} \prec \mathfrak{A}$ of power less than m, any isomorphism f on \mathfrak{B} onto \mathfrak{C} can be extended to an automorphism of \mathfrak{A} .

CASE 2. m is singular. A is homogeneous if A is the union of an elementary chain

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \cdots \prec \mathfrak{A}_{\beta} \cdots$$

where each \mathfrak{A}_{β} is a homogeneous model of a regular power less than m such that $S(\mathfrak{A}_{\beta}) = S(\mathfrak{A})$.

The following lemma from [7] puts the definition of homogeneous model in a more convenient form.

LEMMA 1. Let m be an infinite regular cardinal. The following is a necessary and sufficient condition for a model \mathfrak{A} of power m to be homogeneous:

For all ordinals $\alpha < m$, all α -termed sequences $a, b \in A^{\alpha}$, and all $c \in A$, if

$$T(\mathfrak{A}, a) = T(\mathfrak{A}, b)$$

then there exists $d \in A$ such that

$$T(\mathfrak{A}, a, c) = T(\mathfrak{A}, b, d).$$

We shall now prove a series of lemmas from which Theorems A-C will follow at once.

LEMMA 2. If \mathfrak{A} is homogeneous, $S(\mathfrak{B}) \subseteq S(\mathfrak{A})$, and $|B| \leq |A|$, then \mathfrak{B} is isomorphic to an elementary submodel of \mathfrak{A} .

⁽²⁾ This definition differs from the one in [7] when m is singular.

Proof. First let the cardinal m of A be regular. By transfinite induction on \mathfrak{N} it can be shown that for each cardinal $n \leq m$, for all $b \in B^n$ there exists $a \in A^n$ such that

$$T(\mathfrak{A},a)=T(\mathfrak{B},b).$$

The desired result follows when we take $b \in B^m$ whose range is B.

Now let m be singular and represent \mathfrak{A} as the union of a chain (*). Let \mathfrak{B} be the union of an elementary chain

$$\mathfrak{B}_0 \prec \mathfrak{B}_1 \prec \cdots \prec \mathfrak{B}_{\beta} \prec \cdots$$

where each \mathfrak{B}_{β} has power at most the power of \mathfrak{A}_{β} . Then for each β there is an isomorphism f_{β} of \mathfrak{B}_{β} onto an elementary submodel of \mathfrak{A}_{β} . We may assume that the sequence (*) has been thinned out so that for each β ,

$$|A_{\beta}| > |\bigcup_{\gamma < \alpha} A_{\gamma}|.$$

Then using the fact that the \mathfrak{A}_{β} are homogeneous, we may choose the isomorphisms f_{β} so that

$$\bigcup_{\gamma < \beta} f_{\gamma} \subseteq f_{\beta}.$$

The union of all the f_{β} is the desired isomorphism from \mathfrak{B} to an elementary submodel of \mathfrak{A} .

LEMMA 3. If $\mathfrak{A},\mathfrak{B}$ are homogeneous, |A| = |B|, and $S(\mathfrak{A}) = S(\mathfrak{B})$, then \mathfrak{A} and \mathfrak{B} are isomorphic.

Proof. Similar to Lemma 2. Going back and forth between \mathfrak{A} and \mathfrak{B} , an isomorphism can be constructed with exhausts both A and B.

LEMMA 4. For any complete theory T and any infinite cardinal m,

$$h_T(\mathbf{m}) \leq 2^{2^{\kappa_0}}$$
 and $h_T(\mathbf{m}) \leq 2^{m_0}$

Proof. There are only 2^{\aleph_0} complete types of finite sequences, hence only $2^{2\aleph_0}$ possible sets $S(\mathfrak{A})$. Moreover, there are only 2^m models of power m, up to isomorphism.

LEMMA 5. Suppose \mathfrak{A} is a homogeneous model, $X \subseteq S(\mathfrak{A})$, and $|X| \leq \aleph_0$. Then there is a countable homogeneous model $\mathfrak{B} \prec \mathfrak{A}$ such that $X \subseteq S(\mathfrak{B})$.

Proof. Let C be a countable subset of A such that for each $x \in X$ there is an *n*-tuple of elements of C of type x in \mathfrak{A} . It suffices to find a countable homogeneous model $\mathfrak{B} \prec \mathfrak{A}$ such that $C \subseteq B$. First choose a countable $\mathfrak{B}_0 \prec \mathfrak{A}$ such that $C \subseteq B_0$. Let C_1 be a countable set such that $B_0 \subseteq C_1 \subseteq A$ and for all $a, b \in B_0^n$ and $c \in B_0$, if

 $T(\mathfrak{A}, a) = T(\mathfrak{A}, b)$

then there is a $d \in C_1$ such that

$$T(\mathfrak{A}, a, c) = T(\mathfrak{A}, b, d).$$

Choose a countable $\mathfrak{B}_1 \prec \mathfrak{A}$ such that $C_1 \subseteq B_1$. Continuing the process we choose countable models

$$\mathfrak{B}_0 \prec \mathfrak{B}_1 \prec \mathfrak{B}_2 \prec \cdots$$

and let \mathfrak{B} be the union of the chain. Then \mathfrak{B} is homogeneous and $X \subseteq S(\mathfrak{B})$.

Theorem A now follows easily. We note that if \mathfrak{B} is countable then $S(\mathfrak{B})$ is countable. Hence if the theory T has a homogeneous model \mathfrak{A} such that $S(\mathfrak{A})$ is uncountable, then by Lemma 5 we have $h_T(\aleph_0) > \aleph_0$. Suppose, on the other hand, that $S(\mathfrak{A})$ is countable for every homogeneous model \mathfrak{A} of T. Then for each homogeneous model \mathfrak{A} of T there is a countable homogeneous model \mathfrak{B} with $S(\mathfrak{B}) = S(\mathfrak{A})$ (by Lemma 5). Hence by Lemma 3, $h_T(\mathfrak{m}) \leq h_T(\aleph_0)$ for every $\mathfrak{m} \geq \aleph_0$.

LEMMA 6 (GCH). Let A be a homogeneous model of power n and let $\aleph_1 \leq p \leq n$. Then there is a homogeneous model $\mathfrak{B} \prec \mathfrak{A}$ of power p such that $S(\mathfrak{B}) = S(\mathfrak{A})$.

Proof. From the definition we may clearly assume that *n* is regular. It suffices to prove that for each $C \subseteq A$ and each regular cardinal m with $\aleph_1 \leq |C| \leq m \leq n$, there is a homogeneous $\mathfrak{B} \prec \mathfrak{A}$ of power m with $C \subseteq B$.

Choose a $\mathfrak{B}_0 \prec \mathfrak{A}$ of power m with $C \subseteq B_0$. By the GCH, there are m sequences $a \in \bigcup_{\alpha < \mathfrak{m}} B^{\alpha}$. Hence there is a set C_1 of power m such that $B_0 \subseteq C_1 \subseteq A$ and for all sequences a, b in B_0 of length $\alpha < \mathfrak{m}$ and all $c \in B_0$, if

$$T(\mathfrak{A}, a) = T(\mathfrak{A}, b)$$

then there exists $d \in C_1$ such that

$$T(\mathfrak{A}, a, c) = T(\mathfrak{A}, b, d).$$

We choose $\mathfrak{B}_1 \prec \mathfrak{A}$ of power m containing C_1 , and continue the process m times to form an elementary chain

$$\mathfrak{B}_0 \prec \mathfrak{B}_1 \prec \cdots \prec \mathfrak{B}_a \prec \cdots$$

of length m with each B_{α} of power m. The union of the chain will be homogeneous of power m.

If p is regular, take p = m and take C to contain sequences of each type in $S(\mathfrak{A})$; note that $|S(\mathfrak{A})| \leq \aleph_1 \leq p$. For p singular we iterate the above result to get an elementary chain of homogeneous models \mathfrak{A}_m of power m for each

76

regular m, $\aleph_1 \leq m < p$, with $S(\mathfrak{A}_m) = S(\mathfrak{A})$. Then the union is homogeneous of power p. This completes the proof.

Theorem B is now immediate. By Lemma 6, for each homogeneous model \mathfrak{A} of T of power n there is a homogeneous model \mathfrak{B} of power m with $S(\mathfrak{B}) = S(\mathfrak{A})$. By Lemma 3 we have $h_T(\mathfrak{m}) \ge h_T(\mathfrak{n})$. Corollary C follows from A, B, and Lemma 4.

Our lemmas give more general versions of Theorems A, B, and Corollary C. Let $L_{\omega_1\omega}$ be the logic which is like first order logic but has countably infinite conjunctions, and let $L_{\omega_1\omega_1}$ be the logic which has countably infinite conjunctions and quantifiers over countable sequences of variables (cf. [3]). If T is a countable set of sentences of $L_{\omega_1\omega}$, then the results A, B and C all hold for T. Theorem B still holds if T is a set of sentences of $L_{\omega_1\omega_1}$ and m, n are not cofinal with ω . Moreover, both of the above remarks still hold true if the sentences of T have countably many second order existential quantifiers at the beginning. The point is that in Lemmas 5 and 6, if \mathfrak{A} is a model of T then \mathfrak{B} can be taken to be a model of T.

Instead of giving direct proofs of Lemmas 5 and 6, we could have deduced them as special cases of Löwenheim-Skolem theorems for the appropriate infinitary logics in [3].

We conclude with some problems and examples. Assume the GCH from now on.

By Theorem B, each complete first order theory T has a least cardinal $m_1(T)$ such that for all m, $n \ge m_1(T)$, $h_T(m) = h_T(n)$. Since there are only $2^{\aleph_0}T$'s, there is a least m_1 such that $m_1 \ge m_1(T)$ for all T. What is the cardinal m_1 ? All we know so far is that $m_1 \ge \aleph_2$ (from the examples below). There is also a least cardinal m_2 such that for every homogeneous model \mathfrak{A} of power $\ge m_2$ and all $n \ge m_2$, there is a homogeneous model \mathfrak{B} of power n with $S(\mathfrak{B}) = S(\mathfrak{A})$ (by Lemma 6). It follows from Lemmas 3 and 6 that $m_2 \ge m_1$. The value of m_2 is not known, but seems easier to get at than m_1 . The argument that the numbers m_1, m_2 exist works in a wide variety of situations and is due to Hanf [1]; such numbers are sometimes called Hanf numbers.

For each finite or infinite cardinal $n \leq \aleph_1$, there is a theory T such that h_T is the constant function with value n. Any theory T categorical in power \aleph_0 has $h_T(m) = 1$ for all m. For $3 \leq n < \omega$, the theories T_n of Ehrenfeucht discussed in [9], p. 318, have $h_{T_n}(m) = n$ for all m. It is easy to find theories T where h_T has the constant value \aleph_0 , or \aleph_1 . The complete theory of the model $\langle A, I, < \rangle$ where I is the set of all integers, < the natural order on I, and A - I is countably infinite is an example of a theory T with $h_T(m) = 2$ for all m.

The complete theory of the countable tree in which each element has finitely many predecessors and exactly two immediate successors is a theory T with $h_T(\aleph_0) = 3$, $h_T(\aleph_1) = 2$, $h_T(\aleph_2) = 1$. Whenever $3 \ge a \ge b \ge c$ we know an example of a theory T with

$$h_T(\aleph_0) = a$$
, $h_T(\aleph_1) = b$, $h_T(\aleph_2) = c$.

We have not yet found any example of a theory T with

$$h_T(\aleph_0) = 4, \ h_T(\aleph_1) = 1,$$

or even with

$$\aleph_0 > h_T(\aleph_0) > 3 h_T(\aleph_1).$$

The complete theory of a model with unary relations R_0, R_1, \cdots such that each non-trivial Boolean combination of the R_1 is infinite is a theory T with

$$h_T(\aleph_0) = \aleph_1, \ h_T(\mathfrak{m}) = \aleph_2 \text{ for } \mathfrak{m} > \aleph_0.$$

The theory of a model $\langle A, c_0, c_1, c_2, \cdots \rangle$ where the c_i are distinct constants is a T with

$$h_T(\aleph_0) = \aleph_0, \ h_T(\aleph_1) = 1.$$

We do not know whether there is a complete theory T which does any of the following:

$$h_T(\aleph_0) = \aleph_0, \quad 1 < h_T(\aleph_1) < \aleph_0.$$

$$h_T(\aleph_0) = \aleph_1, \quad h_T(\aleph_1) \le \aleph_0.$$

$$h_T(\aleph_0) \ge \aleph_0 \text{ and } h_T(\aleph_1) > h_T(\aleph_2),$$

$$h_T(\aleph_2) > h_T(\aleph_3).$$

References

1. W. Hanf, Some fundamental problems concerning languages with infinitely long expressions, Doctoral dissertation, Berkeley, 1962.

2. B. Jónsson, Homogeneous universal relational systems. Math. Scand. 8 (1960), 137-142.

C. Karp, Languages with expressions of infinite length. Amsterdam, 1964. xix + 183 pp.
 H. J. Keisler, Some model-theoretic results for ω-logic. Israel Journal of Math, to appear.

5. M. Morley, Categoricity in power. Trans. Amer. Math. Soc. 114 (1965), 514-538.

6. M. Morley, Countable models of \aleph_1 -categorical theories. Israel Journal of Math. This issue, pp. 65-72.

7. M. Morley and R. L. Vaught, Homogeneous universal models. Math. Scand. 11 (1962), 37-57.

8. A. Tarski and R. L. Vaught, Arithmetical extensions of relational systems. Compositio Math. 13 (1957), 81-102.

9. R. L. Vaught, Denumerable models of complete theories pp. 303-321, in Infinitistic Methods, Warsaw 1961.

UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN