ON THE NUMBER OF HOMOGENEOUS MODELS OF A GIVEN POWER*

BY

H. JEROME KEISLER AND MICHAEL D. MORLEY

ABSTRACT

It is shown that, For each complete theory T , the nomber $h_T(m)$ of homogeneous models of T of power m is a non-increasing function of uncountabel cardinals 11t Moreover, if $h_T(\aleph_0) \leq \aleph_0$, then the function h_T is also non-increasing \aleph_0 to \aleph_1 .

A model X is said to be homogeneous if, roughly speaking, any isomorphism between two small elementary submodels of $\mathfrak A$ can be extended to an automorphism of \mathfrak{A} . The notion is due to Morley and Vaught [7], and is based on Jónsson [2] (a precise definition is stated below). Consider a complete theory T in a countable first order logic with identity. For each infinite cardinal cardinal \aleph_{α} , let $h_T(\aleph_{\alpha})$ be the number of (non-isomorphic) homogeneous models of T of power \aleph_a . We shall prove the following two theorems.

THEOREM A. *If* $h_T(\aleph_0) \leq \aleph_0$, then for all $m > \aleph_0$, $h_T(m) \leq h_T(\aleph_0)$.

THEOREM B. *Assume the GCH (generalized continuum hypothesis). If* $\aleph_1 \leq m \leq n$, then $h_T(m) \geq h_T(n)$.

COROLLARY C (GCH). The function h_T is non-increasing except for the single *possibility*

$$
h_T(\aleph_0) = \aleph_1, h_T(\aleph_1) = \aleph_2.
$$

It is shown in [7] that if Thas any infinite models then $h_T(\aleph_0) > 0$, and assuming the GCH, $h_T(m) > 0$ for all infinite m. Some other results on homogeneous models are given in [4]. For results on the total number of models of T of a given power see [5], [6], and [9].

In this paper we shall use $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ to denote models with universe sets A, B, C. $T(\mathfrak{A})$ stands for the complete theory of \mathfrak{A} , that is, the set of all sentences of our

Received November 23, 1966.

^(*) This work was supported in part by NSF contracts GP 4257 and GP5913.

given logic L which are true of $\mathfrak A$. If a is an α -termed sequence of elements of A, then (\mathfrak{A}, a) is a model for the language L with α additional individual constants; in this case, $T(\mathfrak{A}, a)$ is called the *type* of the sequence a in \mathfrak{A} . We shall be especially interested in types of finite sequences of elements, and we let $S(\mathfrak{A})$ be the set of all types of finite sequences o elements of A,

$$
S(\mathfrak{A})=\{T(\mathfrak{A},a)\colon a\in \bigcup_{n<\omega}A^n\}.
$$

The symbol $\mathfrak{A} \prec \mathfrak{B}$ means that \mathfrak{B} is an elementary extension of \mathfrak{A} (or \mathfrak{A} is an elementary submodel of $$\mathfrak{B}$). We assume the reader knows the definition and basic properties of $\mathfrak{A} \prec \mathfrak{B}$, which are given by Tarski and Vaught in [8]. Note that

$$
\mathfrak{A} \prec \mathfrak{B} \qquad \text{implies} \ S(\mathfrak{A}) \subseteq S(\mathfrak{B}),
$$

$$
S(\mathfrak{A}) \subseteq S(\mathfrak{B}) \text{ implies } T(\mathfrak{A}) = T(\mathfrak{B}).
$$

DEFINITION [7].⁽²⁾ Let \mathfrak{A} be a model of infinite power $|A| = m$.

CASE 1. m is regular. It is *homogeneous* if for all $\mathfrak{B}, \mathfrak{C} \prec \mathfrak{A}$ of power less than m , any isomorphism f on $\mathfrak B$ onto $\mathfrak C$ can be extended to an automorphism of \mathfrak{A} .

CASE 2. m is singular. $\mathfrak A$ is *homogeneous* if $\mathfrak A$ is the union of an elementary chain

$$
(\mathbf{W}) \qquad \qquad \mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \cdots \prec \mathfrak{A}_\beta \cdots
$$

where each \mathfrak{A}_{β} is a homogeneous model of a regular power less than m such that $S(\mathfrak{A}_s) = S(\mathfrak{A}).$

The following lemma from [7] puts the definition of homogeneous model in a more convenient form.

LEMMA 1. Let m be an infinite regular cardinal. The following is a necessary *and sufficient condition for a model 92 of power m to be homogeneous:*

For all ordinals $\alpha < m$, *all* α *-termed sequences* $a, b \in A^{\alpha}$ *, and all* $c \in A$ *, if*

$$
T(\mathfrak{A},a)=T(\mathfrak{A},b)
$$

then there exists $d \in A$ *such that*

$$
T(\mathfrak{A},a,c)=T(\mathfrak{A},b,d).
$$

We shall now prove a series of lemmas from which Theorems A-C will follow **at** once.

LEMMA 2. *If* \mathfrak{A} *is homogeneous,* $S(\mathfrak{B}) \subseteq S(\mathfrak{A})$ *, and* $|B| \leq |A|$ *, then* \mathfrak{B} *is isomorphic to an elementary submodel of* \mathfrak{A} *.*

⁽²⁾ This definition differs from the one in [7] when m is singular.

Proof. First let the cardinal m of A be regular. By transfinite induction on \Re it can be shown that for each cardinal $n \leq m$, for all $b \in B^n$ there exists $a \in A^n$ such that

$$
T(\mathfrak{A},a)=T(\mathfrak{B},b).
$$

The desired result follows when we take $b \in B^m$ whose range is B.

Now let m be singular and represent \mathfrak{A} as the union of a chain (*). Let \mathfrak{B} be the union of an elementary chain

$$
\mathfrak{B}_0 \prec \mathfrak{B}_1 \prec \cdots \prec \mathfrak{B}_\ell \prec \cdots
$$

where each \mathfrak{B}_β has power at most the power of \mathfrak{A}_β . Then for each β there is an isomorphism f_{β} of \mathfrak{B}_{β} onto an elementary submodel of \mathfrak{A}_{β} . We may assume that the sequence $(*)$ has been thinned out so that for each β ,

$$
|A_{\beta}|>|{\bigcup}_{\gamma<\alpha}A_{\gamma}|.
$$

Then using the fact that the \mathfrak{A}_p are homogeneous, we may choose the isomorphisms f_{β} so that

$$
\bigcup\nolimits_{\gamma<\beta}f_{\gamma}\subseteq f_{\beta}.
$$

The union of all the f_{β} is the desired isomorphism from $\mathfrak B$ to an elementary submodel of $$\mathfrak{A}$$

LEMMA 3. If $\mathfrak{A}, \mathfrak{B}$ are homogeneous, $|A| = |B|$, and $S(\mathfrak{A}) = S(\mathfrak{B})$, then \mathfrak{A} and $\mathfrak B$ are isomorphic.

Proof. Similar to Lemma 2. Going back and forth between \mathfrak{A} and \mathfrak{B} , an isomorphism can be constructed with exhausts both A and B .

LEMMA 4. For any complete theory T and any infinite cardinal m,

$$
h_T(m) \leq 2^{2^{n_0}}
$$
 and $h_T(m) \leq 2^m$.

Proof. There are only 2^{k_0} complete types of finite sequences, hence only $2^{2^{\aleph_0}}$ possible sets $S(\mathfrak{A})$. Moreover, there are only 2^m models of power m, up to isomorphism.

LEMMA 5. Suppose \mathfrak{A} is a homogeneous model, $X \subseteq S(\mathfrak{A})$, and $|X| \leq \aleph_0$. Then there is a countable homogeneous model $\mathfrak{B} \prec \mathfrak{A}$ such that $X \subseteq S(\mathfrak{B})$.

Proof. Let C be a countable subset of A such that for each $x \in X$ there is an n-tuple of elements of C of type x in \mathfrak{A} . It suffices to find a countable homogeneous model $\mathfrak{B} \prec \mathfrak{A}$ such that $C \subseteq B$. First choose a countable $\mathfrak{B}_0 \prec \mathfrak{A}$ such that $C \subseteq B_0$. Let C_1 be a countable set such that $B_0 \subseteq C_1 \subseteq A$ and for all $a, b \in B_0^n$ and $c \in B_0$, if $T(\mathfrak{A},a) = T(\mathfrak{A},b)$

then there is a $d \in C_1$ such that

$$
T(\mathfrak{A},a,c)=T(\mathfrak{A},b,d).
$$

Choose a countable $\mathfrak{B}_1 \prec \mathfrak{A}$ such that $C_1 \subseteq B_1$. Continuing the process we choose countable models

$$
\mathfrak{B_0} \hspace{-0.1cm}\prec\hspace{-0.1cm} \mathfrak{B_1} \hspace{-0.1cm}\prec\hspace{-0.1cm} \mathfrak{B_2} \hspace{-0.1cm}\prec\hspace{-0.1cm} \cdots
$$

and let \mathfrak{B} be the union of the chain. Then \mathfrak{B} is homogeneous and $X \subseteq S(\mathfrak{B})$.

Theorem A now follows easily. We note that if $\mathfrak B$ is countable then $S(\mathfrak B)$ is countable. Hence if the theory T has a homogeneous model $\mathfrak A$ such that $S(\mathfrak A)$ is uncountable, then by Lemma 5 we have $h_T(\aleph_0) > \aleph_0$. Suppose, on the other hand, that $S(\mathfrak{A})$ is countable for every homogeneous model $\mathfrak A$ of T. Then for each homogeneous model $\mathfrak A$ of T there is a countable homogeneous model $\mathfrak B$ with $S(\mathfrak{B}) = S(\mathfrak{A})$ (by Lemma 5). Hence by Lemma 3, $h_T(m) \leq h_T(\aleph_0)$ for every $m \geq N_o$.

LEMMA 6 (GCH). Let A be a homogeneous model of power π and let $\aleph_1 \leq p \leq n$. Then there is a homogeneous model $\mathcal{B} \prec \mathfrak{A}$ of power p such that $S(\mathfrak{B}) = S(\mathfrak{A}).$

Proof. From the definition we may clearly assume that n is regular. It suffices to prove that for each $C \subseteq A$ and each regular cardinal m with $\aleph_1 \leq |C| \leq m \leq n$, there is a homogeneous $\mathfrak{B} \prec \mathfrak{A}$ of power m with $C \subseteq B$.

Choose a $\mathfrak{B}_0 \prec \mathfrak{A}$ of power m with $C \subseteq B_0$. By the GCH, there are m sequences $a \in \bigcup_{\alpha \leq m} B^{\alpha}$. Hence there is a set C_1 of power m such that $B_0 \subseteq C_1 \subseteq A$ and for all sequences a, b in B_0 of length $\alpha < \pi$ and all $c \in B_0$, if

$$
T(\mathfrak{A},a)=T(\mathfrak{A},b)
$$

then there exists $d \in C_1$ such that

$$
T(\mathfrak{A},a,c)=T(\mathfrak{A},b,d).
$$

We choose $\mathfrak{B}_1 \prec \mathfrak{A}$ of power \mathfrak{m} containing C_1 , and continue the process \mathfrak{m} times to form an elementary chain

$$
\mathfrak{B}_0 \prec \mathfrak{B}_1 \prec \cdots \prec \mathfrak{B}_a \prec \cdots
$$

of length m with each B_{α} of power m. The union of the chain will be homogeneous of power m.

If p is regular, take $p = m$ and take C to contain sequences of each type in $S(\mathfrak{A})$; note that $|S(\mathfrak{A})| \leq \aleph_1 \leq \mathfrak{p}$. For p singular we iterate the above result to get an elementary chain of homogeneous models \mathfrak{A}_m of power m for each

regular m, $\aleph_1 \leq m < p$, with $S(\mathfrak{A}_m) = S(\mathfrak{A})$. Then the union is homogeneous of power p. This completes the proof.

Theorem B is now immediate. By Lemma 6, for each homogeneous model $\mathfrak A$ of T of power n there is a homogeneous model $\mathcal B$ of power m with $S(\mathcal B) = S(\mathfrak A)$. By Lemma 3 we have $h_T(m) \geq h_T(n)$. Corollary C follows from A, B, and Lemma 4.

Our lemmas give more general versions of Theorems A, B, and Corollary C. Let $L_{\omega_{1}\omega}$ be the logic which is like first order logic but has countably infinite conjunctions, and let $L_{\omega_1\omega_1}$ be the logic which has countably infinite conjunctions and quantifiers over countable sequences of variables (cf. $[3]$). If T is a countable set of sentences of $L_{\omega,\omega}$, then the results A, B and C all hold for T. Theorem B still holds if T is a set of sentences of L_{ω,ω_1} and m, n are not cofinal with ω . Moreover, both of the above remarks still hold true if the sentences of T have countably many second order existential quantifiers at the beginning. The point is that in Lemmas 5 and 6, if $\mathfrak A$ is a model of T then $\mathfrak B$ can be taken to be a model of T.

Instead of giving direct proofs of Lemmas 5 and 6, we could have deduced them as special cases of Löwenheim-Skolem theorems for the appropriate infinitary logics in $\lceil 3 \rceil$.

We conclude with some problems and examples. Assume the GCH from now on.

By Theorem B, each complete first order theory T has a least cardinal $m_1(T)$ such that for all m, $n \ge m_1(T)$, $h_T(m) = h_T(n)$. Since there are only $2^m T$'s, there is a least m_1 such that $m_1 \ge m_1(T)$ for all T. What is the cardinal m_1 ? All we know so far is that $m_1 \geq N_2$ (from the examples below). There is also a least cardinal m_2 such that for every homogeneous model \mathfrak{A} of power $\geq m_2$ and all $\pi \geq m_2$, there is a homogeneous model $\mathcal B$ of power π with $S(\mathcal B) = S(\mathfrak A)$ (by Lemma 6). It follows from Lemmas 3 and 6 that $m_2 \ge m_1$. The value of m_2 is not known, but seems easier to get at than m_1 . The argument that the numbers m_1, m_2 exist works in a wide variety of situations and is due to Hanf [1]; such numbers are sometimes called Hanf numbers.

For each finite or infinite cardinal $\pi \leq \aleph_1$, there is a theory T such that h_T is the constant function with value n. Any theory T categorical in power \aleph_0 has $h_T(m) = 1$ for all m. For $3 \le n < \omega$, the theories T_n of Ehrenfeucht discussed in [9], p. 318, have $h_{T_n}(m) = n$ for all m. It is easy to find theories T where h_T has the constant value \aleph_0 , or \aleph_1 . The complete theory of the model $\langle A, I, \lt \rangle$ where I is the set of all integers, \lt the natural order on I, and $A - I$ is countably infinite is an example of a theory T with $h_T(m) = 2$ for all m.

The complete theory of the countable tree in which each element has finitely many predecessors and exactly two immediate successors is a theory T with $h_T(\aleph_0) = 3$, $h_T(\aleph_1) = 2$, $h_T(\aleph_2) = 1$. Whenever $3 \ge a \ge b \ge c$ we know an example of a theory T with

$$
h_T(\aleph_0) = a
$$
, $h_T(\aleph_1) = b$, $h_T(\aleph_2) = c$.

We have not yet found any example of a theory T with

$$
h_T(\aleph_0) = 4, h_T(\aleph_1) = 1,
$$

or even with

$$
\aleph_0 > h_T(\aleph_0) > 3 h_T(\aleph_1).
$$

The complete theory of a model with unary relations R_0, R_1, \cdots such that each **non-trivial Boolean combination of the R, is infinite is a theory T with**

$$
h_T(\aleph_0) = \aleph_1, h_T(\mathfrak{m}) = \aleph_2 \text{ for } \mathfrak{m} > \aleph_0.
$$

The theory of a model $\langle A, c_0, c_1, c_2, \cdots \rangle$ where the c_i are distinct constants is a T with

$$
h_T(\aleph_0) = \aleph_0, h_T(\aleph_1) = 1.
$$

We do not know whether there is a complete theory T which does any of the following:

$$
h_T(\aleph_0) = \aleph_0, \quad 1 < h_T(\aleph_1) < \aleph_0.
$$
\n
$$
h_T(\aleph_0) = \aleph_1, \quad h_T(\aleph_1) \le \aleph_0.
$$
\n
$$
h_T(\aleph_0) \ge \aleph_0 \text{ and } h_T(\aleph_1) > h_T(\aleph_2),
$$
\n
$$
h_T(\aleph_2) > h_T(\aleph_3).
$$

REFERENCES

1. W. Hanf, Some fundamental problems concerning languages with infinitely long expressions, Doctoral dissertation, Berkeley, 1962.

2. B. J'6nsson, *Homogeneous universal relational systems.* Math. Scand. 8 (1960), 137-142.

3. C. Karp, Languages with expressions of infinite length. Amsterdam, 1964. $xix + 183$ pp. 4. H. J. Keisler, *Some model-theoretic results for to-logic.* Israel Journal of Math, to appear.

5. M. Morley, *Categoricity in power.* Trans. Amer. Math. Soc. 114 (1965), 514-538.

6. M. Morley, *Countable models of Rl-categorical theories.* Israel Journal of Math. This issue, pp. 65-72.

7. M. Morley and R. L. Vaught, *Homogeneous universal models.* Math. Scand. 11 (1962), 37-57.

8. A. Tarski and R. L. Vaught, *Arithmetical extensions of relational systems.* Compositio Math. 13 (1957), 81-102.

9. R. L. Vaught, *Denumerable models of complete theories* pp. 303-321, *in Infmitistic Methods,* Warsaw 1961.

UNIVERSITY OF WISCONSIN) **MADISON)** WISCONSIN